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Аннотация. β-Амилоид образуется при метаболизме нейронов и играет важную
роль в поддержании гомеостаза мозга. В норме интенсивное образование β-амилоида
в мозге сопровождается его эффективным выведением с током лимфы.  Однако с возрас-
том и при развитии болезни Альцгеймера наблюдается чрезмерное накопление
β-амилоида в мозге, приводящее к когнитивным нарушениям и дефициту памяти. В науч-
ной литературе появляются новые данные о том, что альдегидогенные липиды (плазмало-
гены), являющиеся одним из ключевых липидов мозга, могут быть полезны при болезни
Альцгеймера и когнитивном старении. Большинство биомедицинских методов не позво-
ляют точно и эффективно оценить процессы, происходящие в тканях головного мозга
при нарушениях его работы. Поэтому в данной работе мы изучили с помощью конфо-
кальной микроскопии и иммуногистохимического анализа влияние альдегидогенных ли-
пидов на лимфатический клиренс β-амилоида из мозга мышей разного возраста с болез-
нью Альцгеймера. Результаты показали, что альдегидогенные липиды эффективно сни-
жают уровень β-амилоида в мозге. Таким образом, применение конфокальной визуализа-
ции позволило установить, что альдегидогенные липиды могут стать перспективным кан-
дидатом для альтернативной или сопутствующей терапии болезни Альцгеймера и воз-
растных заболеваний мозга с целью улучшения лимфатического клиренса β-амилоида.
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Abstract. Study conditions that ensure brain tissuesclearance from metabolites and
toxins are getting more relevant within the context of the study of neurological diseases and
pathophysiological conditions. Disruption of clearance processes can lead to inflammation,
neurodegeneration and other complications. The research problems are related to neuroimaging,
which allowsstudying various structures of the brain limited by the skull bones. In this regard,
one of the main tasks of modern neuroscience is the search for visualizationmethods of brain
structures allowingtoimproveits tissues’ clearance. In this work we studied the effect of
plasmalogens on the lymphatic clearance of β-amyloid from the brain of mice with Alzheimer's
disease and mice of different age using confocal microscopy and immunohistochemistry. β-
Amyloid is taken up by neurons as a result of metabolism and plays a major role in maintaining
homeostasis. β-amyloid in the normformed in the brain is excreted by lymph through the
meningeal vessels into the deep cervical nodes. However, with age and during the development
of Alzheimer's disease, we observe excessive accumulation of β-amyloid in the brain, which
leads to neurodegenerative disorders. According to new data, plasmalogens, which are one of the
key  lipids  of  the  brain,  may  be  useful  in  Alzheimer's  disease  and  cognitive  aging.  The  results
show that Pls effectively increases the level of β-amyloid in the brain. Thus, the use of confocal
imaging may be a promising for alternative or adjunctive therapy for Alzheimer's and age-related
brain diseases used to improve lymphatic clearance of β-amyloid.

Key words: confocal microscopy, aldehyde-producing lipids, Alzheimer's disease, β-
amyloid, lymphatic clearance.
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Введение. Выбор экспериментальных подходов и аналитических мето-
дов играет ключевую роль в организации биомедицинских исследований,
направленных на изучение патофизиологических процессов в тканях голов-
ного мозга с использованием лабораторных животных. В связи с этим особое
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значение приобретают биофизические и биохимические методы исследования,
такие как конфокальная микроскопия и иммуногистохимический анализ.
Конфокальная микроскопия — один из методов оптического анализа, явля-
ющийся быстрым и экономичным способом визуализации толстых и тонких
срезов тканей. Благодаря возможности получать изображения с более высо-
кой чувствительностью, контрастностью и разрешением, биологическая ви-
зуализация значительно продвинулась и позволила изучать глубокие слои
мозговой ткани. Иммуногистохмический анализ позволяет выявить заданные
вещества в тканях мозга с помощью специфических маркеров, что немало-
важно при исследовании накопления в мозге β-амилоида (Аβ) — белка, уро-
вень которого, возрастает в мозге при болезни Альцгеймера (БА) [46; 26; 4].
Аβ — естественный продукт деятельности нейронов, играющий ключевую
роль в регуляции гомеостаза мозга [15; 30; 42; 17]. Он образуется в результа-
те расщепления гликопротеина и белка-предшественника амилоида (APP),
участвующего в процессе передачи биоэлектрического сигнала [27]. В здоро-
вом мозге Aβ высвобождается во время синаптической активности и обеспе-
чивает её пластичность [2]. В процессе метаболизма Aβ, образуются его рас-
творимые формы, которые быстро высвобождаются за пределы клетки и уда-
ляются с помощью лимфы [7; 34; 25]. При старении происходит нарушение
регуляции ферментов, участвующих в деградации Aβ, что приводит к воз-
растному снижению его клиренса из тканей мозга и образованию нераство-
римых бляшек [25; 34]. Патологические изменения уровня Aβ играют значи-
мую роль в развитии БА — прогрессирующего нейродегенеративного забо-
левания, снижающего память и способность к обучению у пожилых людей
[8; 24; 32].

Поиск стратегий, направленных на улучшение выведения Aβ из старе-
ющего мозга, способен привести к прогрессу как в профилактике возрастных
когнитивных нарушений, так и в предотвращении развития БА у пожилых
людей.

В результате таких исследований было установлено, что альдегидоген-
ные липиды могут быть полезны при БА и когнитивном старении [3; 22; 28;
29; 31; 35; 37]. Альдегидогенные липиды — одни из ключевых липидов моз-
га, которые важны для поддержания его гомеостаза [9; 21], так как являются
основными компонентами мембран синапсов, синаптических аппаратов
и миелина [12; 38]. Благодаря своему фузогенному свойству альдегидоген-
ные липиды играют ключевую роль в нейротрансмиссии [33], поддерживают
здоровье микроглии, участвуют в иммунитете мозга [16; 22], влияют на ди-
намику, толщину, кривизну, проницаемость и слияние мембран [39; 45], спо-
собствуют процессам сигнальной трансдукции, включая эффлюкс холесте-
рина [5; 43]. Выявлено, что в мозге плазмалогены содержатся в большом ко-
личестве, поэтому снижение их уровня обуславливает развитие различных
патологий мозга, в том числе БА и возрастных заболеваний [3; 29; 31; 37].
Существует ряд исследований, указывающих на прямую связь между дефи-
цитом альдегидогенных липидов и БА [19; 41]. По данным Ротхаара,
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Аβ снижает уровень плазмалогенов в мозге, а их сниженный уровень
напрямую увеличивает активность γ-секретазы, что приводит к усиленной
выработке Аβ [36].

Пероральное введение альдегидогенных липидов улучшает синаптиче-
скую пластичность мозга и компенсирует старческие изменения синапсов
[22]. Плазмалогены улучшают обучение и память благодаря регуляции ак-
тивности нейротрофического фактора мозга (BDNF) [40], что также лежит
в основе плазмалоген-опосредованного ингибирования апоптоза нейронов
и спасения их от гибели [11; 20; 21]. Эти данные позволяют предположить,
что альдегидогенные липиды могут стать альтернативной терапией возраст-
ного и вызванного БА снижения когнитивных способностей, дефицита памя-
ти и трудностей с обучением.

В данном исследовании с помощью конфокальной микроскопии и им-
муногистохимического анализа было изучено влияние альдегидогенных ли-
пидов на клиренс Aβ из мозга мышей-самцов с использованием двух функ-
циональных моделей: 1) инъекционная модель БА, вызванная введением Aβ
в зубчатую извилину гиппокампа и отражающая ранние стадии БА; 2) воз-
растная модель, отражающая естественные возрастные изменения в накопле-
нии Aβ в мозге (рис. 1).

Материалы и методы исследования. Во всех экспериментах исполь-
зовали самцов мышей C57BL/6, полученных из Национального ресурсного
центра лабораторных животных в Пущино (Московская обл., Россия). Мы-
шей содержали в виварии при стандартных условиях: температуре 25 ± 2 °C,
влажности 55 % и 12-часовом световом цикле. Животные имели свободный
доступ к воде и корму. Все экспериментальные процедуры проводились в со-
ответствии с «Руководством по уходу и использованию лабораторных жи-
вотных», Директивой 2010/63/EU по защите животных, используемых
в научных целях, и методическими рекомендациями Министерства науки
и высшего образования РФ (№ 742 от 13.11.1984), которые были одобрены
Комиссией по биоэтике Саратовского государственного университета (про-
токол № 8 от 18.04.2023). Эксперименты проводили в следующих группах:
1) контроль (3-месячный возраст, без альдегидогенных липидов); 2) контроль
(3-месячный возраст) + альдегидогенные липиды; 3) БА (3-месячный возраст,
без альдегидогенных липидов); 4) БА (3-месячный возраст) + альдегидоген-
ные липиды; 5–7) 6-, 14-, 24-месячные мыши без альдегидогенных липидов;
8–10) 6-, 14-, 24-месячные мыши + альдегидогенные липиды, n = 7–8 в каж-
дой группе.

Приготовление липосом с альдегидогенными липидами и способ введе-
ния мышам. В работе использовали липосомы, приготовленные из фосфоли-
пидного концентрата бычьего мозга. Идентификацию классов липидов в по-
лученных образцах осуществляли методом одномерной тонкослойной хрома-
тографии в системе силикагеля. Хроматограммы сканировали на сканере
“Epson Perfection 2400 PHOTO” (Нагано, Япония) в режиме оттенков серого.
Для сканирования использовали программу “Adobe Photoshop” (“Adobe
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Systems”, San Jose, CШA). Процентное содержание липидов определяли
по интенсивности полос с помощью программы анализа изображений
“Sorbfil TLC Videodensitometer DV” (Краснодар, Россия). Перед началом из-
мерений все приборы были прокалиброваны с помощью калибровочных
стандартов. Соотношение классов липидов «фосфатидилэтаноламины – це-
реброзиды – фосфатидилхолины – сфингомиелины – фосфатидилсерины –
стерины» составляло 50 : 22 : 20 : 3,5 : 3 : 1,5 (по молю).

Рисунок 1 – Схематическая иллюстрация дизайна исследования: a) плазмалогены (альде-
гидогенные липиды (фосфолипиды из мозга быка) вводились в течение 21 дня в правый
боковой желудочек через хронический катетер; эффект влияния альдегидогенных липидов
на клиренс Aβ изучалось на двух моделях — инъекционной модели БА (б), вызванной
введением Aβ в гиппокамп и отражающей ранние стадии БА, и возрастной модели (в), от-
ражающей естественные возрастные изменения в накоплении Aβ в мозге; г) далее до и по-
сле 21-дневного курса альдегидогенных липидов был проведен качественный и количе-
ственный анализ Aβ в тканях мозга с использованием иммуногистохимического метода
(ГХА) и конфокальной визуализации Aβ в мозге, мозговых оболочках и в глубоких шей-
ных лимфатических узлах (ГШЛУ)
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Для анализа содержания и структуры молекулярных видов, включая
плазмалогенные формы фосфорсодержащих липидов, суммарные липиды
разделяли на колонке “Shim-Packdiol” (4,6 мм × 50 мм, размер частиц 5 мкм)
(“Shimadzu”, Япония) с использованием хроматографической системы
“Nexera-e” (“Shimadzu”, Япония). Для определения липидов использовали
тандемный масс-спектрометр высокого разрешения LCMS-IT-TOF
(“Shimadzu”, Япония). Анализ проводили в режиме электрораспылительной
ионизации (ESI) с одновременной регистрацией сигналов положительных
и отрицательных ионов. Структурная идентификация каждого вида молекул
липидов проводилась с помощью ЖХ-МС анализа и заключалась в сравне-
нии времени удерживания, формы ионов и специфического поведения фраг-
ментации классов фосфолипидов с коммерчески доступными стандартами
липидов.

Объем 5 мкл плазмалогенов (~0,15 мг) вводили в правый боковой же-
лудочек (AP — 1,0 мм; ML — 1,4 мм; DV — 3,5 мм) со скоростью
0,1 мкл/мин с помощью микроинжектора (“Stoelting”, Сент-Луис, США)
с использованием шприца “Hamilton” с иглой 29-G (“Hamilton Bonaduz AG”,
Швейцария). Имплантация хронического полиэтиленового катетера (PE-10,
0,28 мм ID × 0,61 мм OD, “Scientific Commodities Inc”, Лейк-Хавасу-Сити,
Аризона, США) в правый боковой желудочек проводилась в соответствии
с протоколом, представленным Devos et al. [10]. Для изучения влияния альде-
гидогенных липидов на клиренс Aβ из мозга и поведение использовали 21-
дневный курс плазмалогенов. Курс альдегидогенными липидами начинали
через 7 дней после интрагиппокампальной инъекции Aβ и / или имплантации
катетера в правый боковой желудочек, когда мыши полностью восстанавли-
вались после операции (рис. 1а/а).

Инъекционная модель ранних стадий БА. Для моделирования БА
у мышей использовали инъекцию пептида Aβ (1-42) в гиппокамп (AP —
2,0 мм; ML ± 1,3 мм; DV — 1,9 мм). Aβ (1–42) растворяли в PBS, а затем ин-
кубировали в течение 5–7 дней при 37 °C, чтобы вызвать образование фиб-
рилл [14]. Мышей наркотизировали 1%-м изофлураном, а затем фиксировали
в стереотаксической раме. Далее снимали кожу и высушивали поверхность
черепа сжатым воздухом. Затем в гиппокамп вводили Aβ (1 мкл, конечная
концентрация 1 мкг, или 0,2 нМ) со скоростью 0,1 мкл/мин с помощью мик-
роинжектора (“Stoelting”, Сент-Луис, США) с использованием шприца
“Hamilton” с иглой 29-G (“Hamilton Bonaduz AG”, Швейцария).

Иммуногистохимический анализ и конфокальная визуализация.
Для конфокальной визуализации наличия FAβ в мозговых оболочках и гип-
покампе был использован протокол иммуногистохимического анализа с мар-
керами эндотелиального гиалуронанового рецептора 1 (LYVE 1) лимфатиче-
ских сосудов и CD31 эндотелия крови. Мозг и мозговые оболочки были со-
браны и подготовлены свободно плавающие срезы. В качестве фиксатора ис-
пользовали 4 % забуференный формалин на солевом растворе с продолжи-
тельностью фиксации 48 ч. Затем срезы тканей толщиной 40–50 мкм
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нарезали на вибротоме (“Leica”, Ветцлар, Германия). Экспрессию антигенов
на срезах исследуемых тканей оценивали по стандартной методике одновре-
менного комбинированного окрашивания препарата (протоколы abcam для
свободно плавающих срезов) с использованием конфокального лазерного
сканирующего микроскопа (“Nikon A1R MP”, “Nikon Instruments Inc.”, То-
кио, Япония). Для блокирования неспецифической активности проводили
инкубацию в течение 2 ч при комнатной температуре с применением 10%-го
бычьего сывороточного альбумина (БСА), растворенного в PBS с добавлени-
ем 0,2% «Тритона Х-100». Солюбилизацию мембран клеток проводили рас-
творе 1%-го «Тритона Х-100» в ФСБ в течение 1 ч инкубации при комнатной
температуре. Инкубация с первичными антителами в разведении 1 : 500 про-
водилась в течение ночи при 4 °C: с кроличьим антителом против пептида
Aβ 1–42 (1 : 200; “Cloud Clone”, № MAA946Ge21). На всех этапах образцы
промывали 3–4 раза с 5-минутной инкубацией в промывочном растворе. По-
сле этого наносили соответствующие вторичные антитела козий антирабиче-
ский IgG (H+L) “Alexa Flour 488” и козий антирабический IgG (H+L) “Alexa
Flour 555” (“Invitrogen”, “Molecular Samples”, Юджин, Орегон, США).
Для визуализации клеточных ядер применяли краситель DAPI, представля-
ющий собой синефлуоресцентную нуклеиновую кислоту. Спектральные ха-
рактеристики комплекса DAPI с двухцепочечной ДНК характеризовались
максимумом поглощения при 358 нм и максимумом эмиссии при 461 нм.
На заключительном этапе срезы переносили на стекло и наносили на них
15 мкл монтажной жидкости (50 % глицерина в ФСБ). Срезы накрывали по-
кровным стеклом и проводили конфокальную микроскопию.

Уровень Aβ измеряли во всем мозге, его сосудах и глубоких шейных
лимфатических узлах с использованием стандартных протоколов иммуноги-
стохимии. Выбор этих тканей был связан с целью изучения влияния альдеги-
догенных липидов на лимфатическое удаление растворимого Aβ из цен-
тральной нервной системы (ЦНС), т. е. удаление Aβ, растворенного в спин-
номозговой жидкости (СМЖ), которая дренирует Aβ из тканей мозга в его
менингиальные сосуды и затем в лимфатические узлы — первую анатомиче-
скую станцию сбора СМЖ с растворенными веществами.

ИФА-анализ тканей головного мозга. Данный анализ проводили
для исследования мозговых оболочек и глубоких шейных лимфатических уз-
лов. Для ИФА использовали набор для определения Aβ (“Cloud Clone”,
№ CEA946Mu). У мышей всех исследуемых групп был собран мозг и прове-
дена дальнейшая пробоподготовка.

Для ИФА ткани мозга гомогенизировали и лизировали для дальнейше-
го выделения и приготовления белков по протоколу “Cloud Clone”. Лизаты
тканей мозга готовили в лизирующем буфере, рН 7,2, со свежеприготовлен-
ной смесью ингибиторов протеаз (“Roche Applied Science”). Измерение опти-
ческой плотности исследуемых образцов проводили при длине волны 450 нм
(А450) на автоматическом иммуноферментном анализаторе — микроплан-
шетном спектрофотометре “Epoch Bio Tek Instruments” (“Bio Tek Instruments”,
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Финляндия). Полученные данные статистически обрабатывали, доверитель-
ные интервалы определяли для 95 % уровня значимости. Обработку экспе-
риментальных данных при объеме выборки (n = 8–10) проводили методом
одномерного дисперсионного анализа ANOVA.

Статистический анализ. Все статистические анализы проводились
с использованием программ “ImageJ”, “Microsoft Office Excel”
и “STATISTICA 10 for Windows”. Во всех представленных результатах коли-
чественные данные выражены в виде среднего значения со стандартной
ошибкой средней (M ± SEM). Различия в интенсивности сигнала Aβ в иссле-
дуемых тканях оценивали с помощью теста ANOVA с апостериорным тестом
Дункана и U-тестом Манна – Уитни. Уровень значимости для всех анализов
составлял p < 0,05. Статистические методы для определения размера выборки
не использовались.

Результаты и их обсуждение
Влияние альдегидогенных липидов на клиренс Aβ из мозга: модель ран-

них стадий БА. На первом этапе экспериментов было выявлено, что плазма-
логены стимулировали выведение Aβ из мозга на ранних стадиях болезни
Альцгеймера (БА). Для этого была выбрана инъекционная модель БА (инъ-
екционная модель БА, вызванная введением Aβ в правую зубчатую извилину
гиппокампа), которая позволяет оценить ранние стадии Aβ-индуцированных
изменений в тканях и функциях мозга [1; 14; 44]. Исследования проводились
в 4 группах: 1) контроль; 2) контроль + альдегидогенные липиды; 3) БА;
4) БА + альдегидогенные липиды. С помощью конфокальной микроскопии
было показано (рис. 2a, е, л), что в контроле небольшое количество Aβ при-
сутствует в тканях мозга, его менингеальных сосудах и глубоких шейных
лимфатических узлах (ГШЛУ), что согласуется с результатами других иссле-
дователей [1]. В то же время в контроле альдегидогенные липиды не изменя-
ли уровень Aβ в исследуемых тканях (рис. 2б, ж, м).

С помощью конфокальной визуализации срезов, подготовленных с по-
мощью иммуногистохимического метода, установили, что в группе мышей
с БА уровень Aβ был значительно выше, чем в контрольных, во всех иссле-
дуемых тканях (рис. 2в, з, н). Важно отметить, что 21-дневный курс альдеги-
догенных липидов снизил уровень Aβ в головном мозге, его оболочках и в
глубоких шейных лимфатических узлах (ГШЛУ) у мышей с БА (рис. 2г, и, о).

Статистический анализ подтвердил данные конфокальной микроско-
пии и показал повышенный уровень Aβ в тканях мозга мышей из группы БА,
который снизился после курса альдегидогенных липидов (23,43 ± 1,14 против
10,18 ± 1,23, пг/г ткани, p < 0,001, между группами БА и контроля без плаз-
малогенов; 16,07 ± 2,14 против 10,04 ± 1,31 пг/г ткани, p < 0,05, между груп-
пами «AD + альдегидогенные липиды» и «контроль + альдегидогенные ли-
пиды»; 23,43 ± 1,14 против 16,07 ± 2,14 пг/г ткани, p < 0,01 между группами
БA без и с альдегидогенными липидами, n = 7 в каждой группе, тест ANOVA
с апостериорным тестом Дункана). Влияние плазмалогенов на количество Aβ
в мозге в контрольных группах отсутствовало, что, возможно, связано с низким
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уровнем Aβ в мозге в нормальном состоянии (10,18 ± 1,23 и 10,04 ± 1,31 пг/г
ткани, n = 7 в каждой группе).

Рисунок 2 — Влияние альдегидогенных липидов на клиренс Aβ из мозга и мозговых обо-
лочек в периферические лимфатические сосуды у мышей с болезнью Альцгеймера: a-г)
конфокальные изображения Aβ (зеленый) в мозге у испытуемых групп; кровеносные со-
суды заполнены “Evans Blue” (синий) и помечены NG2 (красный); e-и) конфокальные
изображения Aβ (красный) в мозговых оболочках у испытуемых групп; л-о) конфокаль-
ные изображения Aβ (красный) в ГШЛУ у испытуемых групп (на e-и кровеносные сосуды
заполнены “Evans Blue” (синий), ядра клеток помечены DAPI (фиолетовый)); д-н) интен-
сивность флуоресцентного сигнала от Aβ, меченого первичными и вторичными антитела-
ми,  в головном мозге (д),  мозговых оболочках (к)  и в ГШЛУ (п), n = 7 в каждой группе;
*p < 0,05, **p < 0,01, ***p < 0,001, тест ANOVA с апостериорным тестом Дункана

Таким образом, лазерная сканирующая микроскопия, которая обладает
четким контрастом и высоким пространственным разрешением, позволила
провести качественный анализ содержания Aβ в тканях мозга, его оболочках
и глубоких шейных лимфатических узлах. Высокая четкость дала возмож-
ность определить накопление Аβ и направления его выведения. На основа-
нии полученных данных было установлено, что повышенное содержание Аβ
в мозге при БА и лимфатический путь выведения Аβ через оболочки мозга
в периферическую лимфатическую систему могут быть скорректированы 21-
дневным курсом альдегидогенных липидов.
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Влияние альдегидогенных липидов на клиренс Aβ из мозга у мышей раз-
ного возраста. Повышение уровня Aβ в тканях мозга является не только од-
ним из признаков развития БА, но и фактором, сопровождающим старение
мозга. На следующем этапе исследования была изучена возможность коррек-
ции возрастных изменений уровня Aβ в мозге, для чего изучали влияние кур-
са альдегидогенных липидов на выведение Aβ из мозга в периферическую
лимфатическую систему у мышей разного возраста: 3-месячных (молодая
особь), 6-месячных (средний возраст), 14-месячных (пожилой возраст)
и 24-месячных (старый возраст) мышей.

Конфокальный анализ выявил повышенное содержание Aβ в ткани го-
ловного мозга и его оболочках у 14-месячных мышей и, особенно,
у 24-месячных мышей по сравнению с 3- и 6-месячными животными, кото-
рые демонстрировали одинаково низкий уровень Aβ в исследуемых тканях
(рис. 3д, к, п). Интересно, что у 24-месячных мышей, несмотря на высокие
значения Aβ в мозге и его оболочках, наблюдалось низкое содержание Aβ
в ГШЛУ (рис. 3л-о), что, возможно, связано с возрастным снижением дре-
нажной функции менингеальных лимфатических сосудов (МЛС) [13; 44].
Количественный иммуногистохимический и иммуноферментный анализы
подтвердили увеличение уровня Аβ в мозге у 14-месячных мышей, особенно
у 24-месячных (старый возраст) мышей (14,29 ± 1,05 против 10,18 ± 1,23 пг/г
ткани, p < 0,05 между 14- и 3-месячными мышами; 14,29 ± 1,05 против 11,07
± 1,02 пг/г ткани, p < 0,05 между 14- и 6-месячными мышами; 18,83 ± 1,07
против 10,18 ± 1,23 пг/г ткани, p < 0,001 между 24- и 3-месячными мышами;
18,83 ± 1,07 против 11,07 ± 1,01 пг/г ткани, p < 0,001 между 24- и 6-
месячными мышами; 18,83 ± 1,07 против 14,29 ± 1,05 пг/г ткани, p < 0,01,
между 24- и 14-месячными мышами, n =  7  в каждой группе,  тест ANOVA
с пост-хок-тестом Дункана).

Таким образом, альдегидогенные липиды улучшают клиренс Aβ у 14-
месячных мышей (пожилой возраст), но не у 24-месячных (старый возраст)
мышей, что, скорее всего, связано с частичным сохранением функций менин-
геальных лимфатических сосудов в старом мозге [23]. Это может объяснить
низкое содержание Aβ в глубоких шейных лимфатических узлах у 24-
месячных мышей, несмотря на высокий уровень Aβ в мозге и оболочках
и отсутствие эффекта альдегидогенных липидов на клиренс Aβ у старых
мышей. У 14-месячных мышей плазмалогены усиливали выведение Аβ
из мозга в периферические лимфатические пути, то есть через лимфатиче-
ские пути, что приводило к снижению уровня Аβ в мозге и его оболочках до
уровня молодых (3 мес.) и средневозрастных (6 мес.) животных.
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Рисунок 3 — Влияние плазмалогенов ПЛ (альдегидогенных липидов) на клиренс Aβ
из мозга и мозговых оболочек в периферические лимфатические сосуды у мышей с болез-
нью Альцгеймера: а-д) конфокальные изображения Aβ (зеленый) в мозге у испытуемых
групп; кровеносные сосуды заполнены “Evans Blue” (синий) и помечены NG2 (красный);
е-к) конфокальные изображения Aβ (красный) в мозговых оболочках у испытуемых
групп; л-п) конфокальные изображения Aβ (красный) в ГШЛУ у испытуемых групп.
На л-о кровеносные сосуды заполнены “Evans Blue” (синий), ядра помечены DAPI (фио-
летовый). Уровни Aβ в головном мозге (д), мозговых оболочках (к) и в ГШЛУ (п), n = 7
в каждой группе; *p < 0,05, **p < 0,01, ***p < 0,001, U-тест Манна – Уитни

Полученные данные позволяют предположить, что более сильные из-
менения с возрастом связаны с повышенной нервной активностью, основан-
ной на сложном процессе обучения и формировании новых синаптических
связей. Альдегидогенные липиды могут повышать активность лимфатиче-
ского очищения у 14-месячных мышей (пожилые), не оказывая влияния
на старых животных.

Наши результаты согласуются с данными о нормальном образовании
Aβ в мозге как продукта метаболизма и возрастном увеличении уровня Aβ
в мозге из-за снижения с возрастом лимфатического выведения токсина [6; 7;
18; 25; 32; 34]. Результаты терапии альдегидогенными липидами подтвер-
ждают эту гипотезу. Действительно, плазмалогены улучшают клиренс Aβ
у пожилых, но не у старых мышей. Есть данные, что у молодых мышей
и мышей среднего возраста не наблюдается изменений в лимфатической сети
[44]. Процесс гиперплазии лимфатической сети и дисфункции лимфатиче-
ских клапанов начинает проявляться у стареющих мышей (начиная с 13–14-
месячного возраста), что приводит к нарушению дренажной функции голов-
ного мозга [13]. У мышей с БА отложение Аβ также зависит от возрастных
изменений в лимфатическом клиренсе токсина из мозга. Так, у 13–14-
месячных мышей 5xFAD наблюдается ухудшение лимфатического сосуди-
стого русла в дорсальных оболочках, что сопровождается значительным уве-
личением отложения Aβ во всех менингеальных сосудах [32; 44]. Возможно,
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сохранение функционального потенциала МЛС у стареющих животных обу-
словлено эффективным выведением Аβ из тканей мозга в ГШЛУ. Это пред-
положение основано на данных Де Мескита, свидетельствующих об улучше-
нии иммунотерапии Аβ за счет стимуляции лимфанеогенеза [9]. Нарушение
функций мозговых оболочек на поздних стадиях онтогенеза может объяснить
низкое содержание Aβ в ГШЛУ у 24-месячных мышей, несмотря на высокий
уровень Aβ в мозге и оболочках и отсутствие эффекта плазмалогенов на кли-
ренс Aβ в них. Не было обнаружено влияния альдегидогенных липидов
на удаление Aβ из мозга у молодых и средневозрастных мышей, что, по-
видимому, связано с низким уровнем Aβ в мозге в этих возрастных группах.
Эти данные представляют собой важную информационную основу для более
глубокого понимания применения альдегидогенных липидов для терапии
возрастных заболеваний мозга [18].

Заключение. Таким образом, применение методов конфокальной визу-
ализации и иммуногистохимического анализа позволили получить результа-
ты, которые убедительно свидетельствуют о том, что плазмалогены могут
быть перспективным кандидатом для усиления клиренса Aβ в стареющем
мозге и у больных БА. Действительно, 21-дневный курс введения альдегидо-
генных липидов в правый боковой желудочек значительно снижает повы-
шенный уровень Aβ в мозге у 14-месячных животных и у мышей с ранней
стадией БА. Однако у старых 24-месячных мышей плазмалогены не оказыва-
ет влияния на клиренс Aβ. Использование альдегидогенных липидов для ле-
чения нейродегенеративных и возрастных заболеваний мозга является новым
направлением [3; 16; 22; 28; 29; 31; 35; 37; 40]. Поэтому, несмотря на много-
обещающие результаты [3; 11; 20; 21; 28; 36], остается малоизученным то,
какой тип альдегидогенных липидов наиболее эффективен, в каких дозах, ка-
кой должна быть продолжительность терапии, у каких испытуемых терапия
эффективна, а у каких нет, и какой способ введения плазмалогенов даёт
наиболее выраженный терапевтический эффект. В данном эксперименте аль-
дегидогенные липиды вводили в желудочки мозга. Это ограничивает воз-
можность ответить на вопросы о том, будут ли достигнуты те же эффекты
при использовании per os или внутривенно и проходят ли плазмалогены че-
рез гематоэнцефалический барьер. С помощью лазерной сканирующей мик-
роскопии дальнейшие исследования, способные ответить на эти вопросы,
позволят добиться значительного прогресса в разработке перспективной те-
рапии заболеваний мозга с использованием альдегидогенных липидов, а так-
же лучше понять механизмы, лежащие в основе улучшения клиренса Aβ
и когнитивных функций, связанного с применением их в животных моделях.

Совет по институциональному надзору. Все экспериментальные
процедуры проводились в соответствии с «Руководством по уходу и исполь-
зованию лабораторных животных», Директивой 2010/63/EU по защите жи-
вотных, используемых в научных целях, и методическими рекомендация-
ми Министерства науки и высшего образования РФ (№ 742 от 13.11.1984),
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которые были одобрены Комиссией по биоэтике Саратовского государствен-
ного университета (протокол № 8, 18.04.2023).
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