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Аннотация. С момента своего открытия в 1982 г. клетки VBNC (Viable But Non 
Culturable) характеризовались потерей способности к росту на агаре. Рост бактерии на пи- 
тательном агаре зависит от физиологических и биохимических характеристик её рода или 
вида. Каждый род бактерий имеет свои особенности и требования к культивированию. 
Внешние условия и стрессовые факторы могут влиять на физиологическое состояние кле- 
ток. Мёртвые клетки нельзя культивировать из-за отсутствия метаболической активности. 
Однако бактерии, которые нельзя культивировать, не обязательно мертвы. Бактерии под 
влиянием стресса или неблагоприятных условий могут выжить (образовать споры или пе- 
реключиться на некультивируемое состояние). 
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Abstract. Since its discovery in 1982, the VBNC cells (Viable But Non Culturable) are 
characterized by a loss of cultivability on agar, cultivable character of a bacterium depends on 
physiological characteristics and biochemical of its genus or its species. Each bacterial genus has 
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its peculiarities and nutritional requirements for growth. External conditions and stress factors 
can influence the physiological state of cells. Dead cells, without metabolic activity, cannot be 
cultured. However a non culturable bacterium is not necessarily dead. Bacteria subjected to 
stress or unfavorable conditions, they can survive (form spores or switch to a non culturable 
state: the viable but non culturable state -VBNC-). 

Keywords: VBNC, Favorable and unfavorable conditions, Metabolic activity, RT-PCR. 
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1. Концепция (теория) самозарождения. Концепция или теория само- 

зарождения существует несколько десятков веков. Эту теорию защищал фи- 

лософ Аристотель. Считалось, что живые организмы родились из разлагаю- 

щихся растений и животных, благодаря загадочной жизненной силе. После 

открытия А. ван Левенгуком анималкул эта теория была подтверждена, в ча- 

стности, экспериментами Дж. Нидхема в 1745 г., который продемонстриро- 

вал рост микроорганизмов в колбах, содержащих вареное мясо или кукурузу. 

Эти бульоны нагревали перед тем, как внести их в колбы. Затем Л. Спаллан- 

цани продемонстрировал, что флаконы Нидхема не являются герметичными. 

Он закрыл флаконы перед нагреванием, и роста не наблюдалось. Итак, учё- 

ные поняли, что микроорганизмы происходят из воздуха. Закрытие колб пре- 

дотвращало проникновение кислорода, необходимого для жизни. Идея спон- 

танного зарождения оставалась глубоко укоренившейся в умах людей до 

1861 г. Этим вопросом продолжал заниматься Л. Пастер, сторонник биогене- 

за. Он показал, что ни один микроорганизм не растёт в закрытой и стерили- 

зованной колбе, содержащей органические вещества. Поэтому спонтанного 

зарождения не существует. Он утверждал, что «появление жизни в неживом 

растворе происходит из-за загрязнения воздуха микроорганизмами». Этот 

предположение принесло ему премию Академии наук в 1862 г. Благодаря 

эксперименту Л. Пастера микробиология стала самостоятельной наукой, ко- 

гда стало возможным получать чистые культуры благодаря разработке агаро- 

вых (твёрдых) питательных сред и чашек Петри. Кроме того, благодаря про- 

изводству микроскопов более мощных, чем первые лупы. 

Прямая связь между бактериями и болезнями была продемонстрирова- 

на немецким врачом Робертом Кохом (1843–1910) при изучении туберкулёза 

и его возбудителя Mycobacterium tuberculosis. Чтобы подтвердить эту связь, 

необходимо было проверить несколько критериев, собранных под названием 

«Постулаты Коха»: 

1. Микроорганизм должен присутствовать у всех больных и отсутство- 

вать у здоровых. 

2. Микроорганизм необходимо изолировать и культивировать в чистой 

культуре. 

3. Выделенными чистыми культурами необходимо вызвать заболева- 

ние путём экспериментальной инокуляции. 
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4. Тот же самый микроорганизм должен быть снова изолирован от экс- 

периментальных пациентов. 

Одновременно и впоследствии достижения других известных учёных 

в данной области: 

• Дж. Тиндаль (1877): открытие спор, их термостойкость и развитие 

тиндаллизации; 

• С. Н. Виноградский (1856–1953): работа с нитрифицирующими, 

азотфиксирующими, серными бактериями и бактериальным разложением 

целлюлозы в почвах; 

• М. В. Бейеринк (1851–1931): изучение азотфиксирующих симбиоти- 

ческих бактерий. 

2. Место микроорганизмов в живом мире. Со времени их открытия 

А. ван Левенгуком, место бактерий в живом мире сильно изменилось. Швед- 

ский ботаник К. Линней (1735) разработал первую классификацию, разделив 

живые организмы на два царства – Plantae и Animalia. В 1857 г. К. Негели 

предложил отнести бактерии и грибы к Царству растений. 

Согласно классификации Э. Геккеля (1866), живой мир делится на три 

царства: Царство животных, Царство растений и Царство протистов, которое 

объединяет водоросли, простейшие, грибы и бактерии. 

Различие между эукариотическими и прокариотическими клетками. 

Благодаря изобретению электронного микроскопа Э. Шаттон противопоста- 

вил два типа клеток (1937): эукариотическую (ядро окружено мембраной, 

в клетке содержатся клеточные органеллы) и прокариотическую (ядро без 

мембраны, очень простая организация клетки). В 1938 г. Г. Коупленд отде- 

лил Царство бактерий от Царства протистов. Систематику прокариот усо- 

вершенствовал Р. Станьер в 1961 г. 

Р. Дж. Э. Мюррей, продолжая дело Э. Шаттона, создал свою классифи- 

кацию (1968), разделив делит живой мир на два царства – эукариот и прока- 

риот. Р. Дж. Э. Мюррей выделил четыре отдела, описанные в руководстве 

Берджи (“Bergey's Manual”): Gracilicutes – грамотрицательные бактерии; 

Firmicutes – грамположительные бактерии; Tenericutes – бактерии, лишённые 

клеточной стенки; отдел Mendosicutes – архебактерии. 

Классификация пяти царств Р. Х. Уиттакера (1969) описывает четыре 

эукариотических  царства  (животные,  растения,  грибы  и  простейшие), 

а прокариоты объединяются в царство бактерий. Несмотря на то, что класси- 

фикации Э. Шаттона и Р. Х. Уиттакера значительно разнились, однако суще- 

ствовали одновременно в течение длительного времени. 

Развитие методов молекулярной биологии позволило охарактеризовать 

гены, кодирующие рибосомные РНК (рРНК). Сравнивая множество наборов 

16S рРНК, принадлежащих различным живым организмам, К. Вёзе смог раз- 

делить живые организмы на три домена (1978): домен бактерий, домен архей 

и домен эукариот (животные, растения, грибы и простейшие). Так родилась 

геномная классификация. 
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Рисунок 1 – Универсальное филогенетическое дерево (по К. Вёзе, 1977) 

3. Роль бактерий в биогеохимических циклах. Простые элементы, 

участвующие в строении всего живого, существуют на поверхности земли 

только в ограниченных количествах. Составляющие мертвых организмов 

должны быть переработаны. Микроорганизмы играют жизненно важную 

роль в этом процессе переработки. 

Углеродный цикл – это основной состав живых существ. Сапрофитные 

микроорганизмы разрушают органическое вещество мёртвых растений и жи- 

вотных. Автотрофные микроорганизмы фиксируют СО2. Но это явление не- 

значительно по сравнению с фотосинтетической активностью в количествен- 

ном отношении. 

Азотный цикл зависит от активности бактерий. Он необходим для 

синтеза аминокислот, нуклеиновых кислот и аминосахаров. Наша атмосфера 

на 78 % состоит из азота. Азот в форме аммиака может ассимилироваться 

многими организмами, будучи включённым в виде аминогруппы. Другие 

бактерии используют нитраты в качестве источника азота. Разложение орга- 

нического вещества сапрофитами высвобождает аммиак (дезаминирование 

аминокислот). Часть аммиака используется непосредственно в качестве ис- 

точника азота. Другая часть окисляется до нитрита (NO
2–

), затем до нитрата 

(NO
3–

) хемотрофными бактериями во время нитрификации. Другие бактерии 

могут фиксировать азот из атмосферы и производить АТФ в отсутствие ки- 

слорода. Нитрат восстанавливается до нитрита. Некоторые бактерии восста- 

навливают нитриты до молекулярного азота (денитрификация). Эти потери 
компенсируются азотфиксирующими бактериями благодаря ферменту нитро- 

геназе. Азотфиксирующими являются Azotobacter, Rhizobium, Nostoc, 

Anabaena, цианобактерии. 
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Круговорот серы. Сера входит в состав двух аминокислот – цистеина 

и метионина, CоА. Зелёные растения и некоторые бактерии могут усваивать се- 

ру в форме сульфата, но для этого сульфат необходимо восстановить в процессе 

сульфатредукции. В природе существуют микроорганизмы, которые непосред- 

ственно ассимилируют сульфиды, образующиеся в больших количествах в ана- 

эробной водной среде, путём восстановления сульфатов. Эти сульфиды, в свою 

очередь, окисляются хемилитотрофами, такими как Thiobacillus, а также зелё- 

ными и пурпурными сернистыми фотосинтезирующими бактериями. 

Фосфорный цикл. Фосфор важен для синтеза нуклеиновых кислот, 

фосфолипидов. Фосфор часто является самым ограничивающим фактором 

для роста организмов. Фосфор можно получить только при распаде породы, 

содержащей фосфат. В почве содержится как органический, так и неорганиче- 

ский фосфор. Органическое вещество перерабатывается микроорганизмами. 

Цикл железа. Он заключается в окислении двухвалентного железа 

до трехвалентного (от Fe
2+

 до Fe
3+

) в аэробных условиях и при нейтральной 

реакции среды (Thiobacillus ferroxidans). При анаэробиозе ион двухвалентно- 

го железа накапливается в процессе дыхания железа, в котором используется 

ион трёхвалентного железа как акцептор электронов (Geobacter). Наконец, 

магнитотактические бактерии превращают железо в магнетит (Fe3O4), кото- 

рый накапливается в цитоплазме. Магнетит чувствителен к магнитным полям 

и может использоваться бактериями для миграции через водоёмы и болота 

в места, более богатые кислородом. 

4. Характеристики некультивируемых и нежизнеспособных форм 

бактерий. Мёртвые бактерии, не культивируемые и нежизнеспособные, 

не имеют метаболической активности, у них отсутствует обмен между цито- 

золем и внешним миром. Поскольку обновления мембранных липидов боль- 

ше не происходит, плазматическая мембрана мёртвых клеток обычно изме- 

няется. Некоторые факторы могут привести к гибели бактерии или лизису 

клеток: осмотический шок, термическая обработка, действие сурфактанта 

или влияние pH. Во время роста в культуральной среде гибель бактерий 

в значительной степени происходит во время четвертой фазы (фаза, при ко- 

торой запас питательных веществ исчерпывается и бактерии погибают)
4
. 

Рост бактериальной культуры можно разделить на несколько этапов 

(рис. 2). Первая фаза, называемая латентным периодом, – это период адапта- 

ции бактериальных клеток к среде, в которой они находятся. Вторая фаза – 

экспоненциальный рост: клетки быстро делятся и колонизируют среду; 

на этом этапе в бактериальной популяции гораздо больше живых, чем мёрт- 

вых клеток. В конце экспоненциальной фазы рост замедляется, затем начина- 

ется стационарная фаза. Бактериальная популяция остаётся стабильной, бак- 

терии используют компоненты среды для синтеза вторичных метаболи- 

тов. На этом этапе среда меняется, метаболиты, выделяемые бактериями, 

 

4
 Первая фаза роста называется лаг-фазой, вторая – логарифмической, или экспо- 

ненциальной фазой, третья фаза – стационарная, четвёртая – финальная (фаза гибели). 
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/накапливаются, количество мёртвых клеток увеличивается. После продол- 

жительной стационарной фазы бактерии погибают либо потому, что они 
больше не могут обеспечивать свой метаболизм, либо из-за токсичности оп- 

ределённых метаболитов, которые они секретируют. Клеточная мембрана, 

а также бактериальная стенка могут быть повреждены, тогда происходит ли- 

зис клеток [25]. 
 

Рисунок 2 – Кривая роста бактериальной популяции 

Характеристики жизнеспособных некультивируемых форм бакте- 

рий (VBNC). Первая статья, описывающая и демонстрирующая существова- 

ние жизнеспособных некультивируемых форм на микробах Escherichia coli и 

Vibrio cholerae, датируется 1982 г. [40]. С тех пор список изучаемых и опи- 

санных микроорганизмов в жизнеспособном некультивируемом состоянии 

увеличился (табл. 1). 

Таблица 1 – Жизнеспособные некультивируемые формы бактерий 

Aeromonas salmonicida Lactobacillus plantarum Serratia marcescens 
Agrobacterium tumefaciens Lactococcus lactis Shigella dysenteriae 
Alcaligenes eutrophus Legionella pneumophila S. flexneri 
Aquaspirillum sp. Listeria monocytogenes S. sonnei 
Burkholderia cepacia Micrococcus flavus Sinorhizobium meliloti 
B. pseudomallei M. luteus Streptococcus faecalis 
Campylobacter coli M. varians Tenacibaculum sp. 
C. jejuni Mycobacterium tuberculosis Vibrio anguillarum 
C. lari M. smegmatis V. campbellii 
Cytophaga allerginae Pasteurella piscida V. cholerae 
Enterobacter aerogenes Pseudomonas aeruginosa V. fischeri 
E. cloacae P. fluorescens V. harveyi 
Enterococcus faecalis P. putida V. mimicus 
E. hirae P. syringae V. natriegens 
E. faecium Ralstonia solanacearum V. parahaemolyticus 
Escherichia coli (including EHEC) Rhizobium leguminosarum V. proteolytica 
Francisella tularensis R. meliloti V. shiloi 
Helicobacter pylori Rhodococcus rhodochrous V. vulnificus (types 1&2) 
Klebsiella aerogenes Salmonella enteritidis Xanthomonas campestris 
K. pneumoniae S. typhi  

K. planticola S. typhimurium  
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Бактерия может находиться в жизнеспособном некультивируемом со- 

стоянии, но потерять способность к размножению на обычной культуральной 

среде. Её метаболическая активность может быть продемонстрирована при- 

сутствием мРНК с продолжительностью жизни менее 1 мин [41]. Эти бакте- 

рии могут восстановить свою «культивируемость» — феномен, называемый 

«реанимацией (resuscitation) [21]. Переход бактерии в состояние VBNC — это 

стратегия, которая позволяет клеткам выживать в неблагоприятных услови- 

ях, т. е. обратимое состояние, подобное споруляции грамположительных бак- 

терий, таких как Bacillus или Clostridium. Такие VBNC обладают особыми и 

часто разными характеристиками у разных видов. Имеется несколько работ, 

в которых описаны характеристики микроорганизмов в состоянии VBNC. 

Исследование, проведенное на Campylobacter jejuni, показало, что жизнеспо- 

собная некультивируемая клетка сохраняет уровень АТФ, сравнимый с куль- 

тивируемой клеткой [4]. Однако у C. jejuni были продемонстрированы неко- 

торые физиологические изменения: падение внутриклеточного pH и концен- 

трации ионов калия (K
+
) [33]. В дополнение к метаболическим и физиологи- 

ческим характеристикам, жизнеспособные некультивируемые бактерии име- 

ют морфологические и структурные отличия от культивируемых форм. Зна- 

чительное повышение механической устойчивости бактериальной стенки 

было показано на Enterococcus faecalis [16]. Это можно объяснить измене- 

ниями структуры стенки: в частности, наличием муропептидных полимеров 

более двух степеней (тримеры, тетрамеры, пентамеры и др.). 

VBNC клетки и их значение. Многие виды бактерий входят в состоя- 

ние VBNC при воздействии стрессовых условий, таких как отсутствие пита- 

тельных веществ и низкие температуры [5; 10]. Это позволяет предположить 

о долгосрочной адаптивной стратегии выживаемости бактерий в неблагопри- 

ятных условиях окружающей среды [11]. Данная гипотеза подтверждается 

некоторыми характеристиками клеток VBNC, включая большую устойчи- 

вость к экзогенным стрессам, долговременную выживаемость после стресса 

и способность к реанимации. Например, клетки VBNC V. parahaemolyticus 

более устойчивы к кислотности, что позволяет им выживать в неблагоприят- 

ной окружающей среде при низком pH [39]. VBNC-клетки V. fluvialis стано- 

вятся жизнеспособными после шести лет дефицита питательных веществ, 

т. е. можно предположить, что бактерии в состоянии VBNC могут оставаться 

живыми в течение длительного времени даже при постоянном стрессе [1]. 

Что ещё более важно, многие виды обладают способностью переходить из 

состояния VBNC в состояние культивирования после снятия стресса [2; 29]. 

Доказательства, представленные выше, подтверждают гипотезу о том, что 

состояние VBNC — это форма жизни в состоянии покоя, которая позволяет 

организму ждать соответствующих условий для восстановления [16; 17]. 

Другая гипотеза предполагает, что состояние VBNC является переходной 

стадией дегенерации бактериальной популяции, ведущей к гибели клеток 
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[20; 34]. Тем не менее доказательств в поддержку второй гипотезы не так 

много, поэтому первое является общепринятым. 

Способность перейти в состояние VBNC может быть полезным для 

бактерий, но представляет риск для здоровья человека. Если присутствуют 

клетки VBNC, общее количество жизнеспособных бактерий в образце будет 

недооценено методом подсчёта КОЕ (колониеобразующая единица). Что ещё 

хуже, если все бактерии в образце находятся в состоянии VBNC, образец 

можно считать стерильным из-за отсутствия роста бактерий при обнаруже- 

нии классическими методами. Риски возникают из-за того, что патогенные 

бактерии могут быть авирулентными в состоянии VBNC, но проявляют свою 

вирулентность после восстановления [10]. Это свойство клеток VBNC может 

приводить к латентному периоду и, как следствие, к рецидиву заболевания 

у пациентов, которые считаются излечёнными [23; 28]. Поэтому крайне важно 

понимать, какие виды патогенов человека могут переходить в состояние 

VBNC, и применять надёжные методы обнаружения для количественного оп- 

ределения точной популяции жизнеспособных клеток, включая культивируе- 

мые клетки и VBNC. Помимо этого, для эффективного предотвращения бакте- 

риальных инфекций и их лечения необходимо определение условий, которые 

могут побудить бактерии к переходу в состояние VBNC, и лежащих в основе 

механизмов, а также понимание условий и механизмов восстановления. 
Факторы, вызывающие гибель клеток. Многие факторы могут при- 

вести к гибели клеток, естественной или вызванной факторами окружающей 

среды: высокие температуры, используемые для стерилизации или пастери- 

зации, осмотический шок, органические растворители и поверхностно- 

активные вещества, высокая концентрация соли, слишком кислая или слиш- 

ком щелочная реакция среды, отсутствие субстратов, необходимых для вы- 

живания, длительное хранение при низких температурах, ферменты, анти- 

биотики. 

Индукция некультивируемого жизнеспособного состояния. 

У каждого вида бактерий есть стратегии защиты от внешних стрессов: 
образование спор, выработка определённых белков при тепловом стрессе 
(например, белки теплового шока – heat shock proteins), переход в некульти- 
вируемое состояние или даже адаптация метаболизма к внешним условиям. 
Бактериальные клетки переходят в состояние VBNC при воздействии таких 
стрессов, как низкие или высокие температуры, колебания осмотического 
давления, дефицит питательных веществ, окислительный стресс, вызванный 
избытком кислорода и его активных производных, обезвоживание, длитель- 
ное воздействие естественного света [3; 22]. Эти же факторы могут быть 
смертельными. Эффект каждого из них зависит, в частности, от продолжи- 
тельности и степени воздействия. Природные условия, в которых обитают 
бактерии, часто не оптимальны для роста и способствуют появлению форм 
VBNC. Например, первые бактерии в состоянии VBNC, изученные N. S. Xu 
et al. в 1982 г. были Escherichia coli и Vibrio cholerae, выделенные из морской 
и устьевой воды (относительно холодная вода (+15 °C) и высокая солёность 
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(в среднем 35 г/л солей для морской воды)) [40]. В продуктах питания чело- 
века, бактерии также подвергаются серьёзным испытаниям: длительное хра- 
нение при +4 °C, солёные или копчёные продукты, консерванты или даже 
пастеризация. Все эти воздействия могут предотвратить размножение бакте- 
рий, но также вызывают присутствие форм VBNC. 

Экспериментальная индукция некультивируемого жизнеспособного 
состояния. Многие исследования проводятся на бактериальных формах 
VBNC, для чего необходимо иметь возможность искусственно индуцировать 
переход бактерий в состояние VBNC. Большинство исследований проводится 
на формах, вызванных дефицитом питательных веществ. Для этого бактерии 
хранят в изотонических растворах, лишённых питательных веществ, или 
в искусственной морской воде. Эта обработка может сопровождаться инку- 
бацией при низкой температуре [37]. Во всех случаях необходимо проверить 
жизнеспособность клеток, содержащихся в бактериальных образцах. 

Жизнеспособные бактерии, которые не могут быть культивируе- 

мыми в окружающей среде. По данным J. T. Staley et al., более 99 % видов, 

присутствующих в окружающей среде, будут находиться в состоянии VBNC 

[30]. Некоторые исследования были выполнены на различных средах, таких 

как осадок сточных вод [12] или на почвах (бурые земли) [35]. 

Действительно, некоторые исследования показывают, что сохранение 
форм VBNC в нескольких объектах окружающей среды, естественно загряз- 
ненных жизнеспособной и культивируемой флорой, невозможно [6; 18]. 
В случае, когда стрессированные микробы находятся в состоянии VBNC, 
конкурируя с многочисленной нестрессированной флорой, их шансы на вы- 
живание сильно снижаются. 

5. Методы исследования некультивируемых бактерий 
Анализ методом флуориметрии. Несколько методов поиска и под- 

счёта жизнеспособных бактерий основаны на флуориметрии. Этот метод 
требует использования системы эпифлуоресцентной микроскопии. Принцип 
этой микроскопии состоит в возбуждении флуорохрома на заданной длине 
волны, чтобы можно было наблюдать излучаемый сигнал. Обработка полу- 
ченного изображения может осуществляться с помощью компьютерной сис- 
темы, подключенной к CCD-камере (Charge Coupled Device — фотографиче- 
ский датчик на основе устройства с зарядовой связью). 

Двойное окрашивание CTC / DAPI позволяет подсчитывать и разли- 
чать мёртвые и живые клетки. CTC (5-cyano-2,3-ditolyl tetrazolium chloride) — 
это краситель, используемый для подсчёта жизнеспособных клеток. После 
восстановления CTC до нерастворимого CTC-формазана испускает красную 
флуоресценцию (после возбуждения на 450 нм испускается красной флуо- 
ресценции на 630 нм). Уменьшение CTC клетками является признаком кле- 
точного дыхания и означает, что метаболизм активен [12; 14]. 

Окрашивание DAPI (4'-6 diamino 2 phenyl indole) позволяет подсчиты- 
вать все клетки. Этот флуорофор специфически связывается с ДНК и излучает 
синюю флуоресценцию с максимальной эмиссией при 456 нм (возбуждение 
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при 372 нм, светло-фиолетовый). Окрашивание можно проводить одновре- 
менно или по отдельности на двух образцах. 

Анализ молекулярной биологии с помощью RT-PCR. Использование 

инструментов молекулярной биологии позволило изучать бактерии в жизне- 

способном некультивируемом состоянии. Приведём инструменты, позво- 

ляющие обнаруживать бактерии VBNC. Полимеразная цепная реакция с об- 

ратной транскриптазой (RТ-PCR) — метод, используемый для обнаруже- 

ния VBNC. Мишенями этой реакции являются мРНК, транскрибируемые из 

генов потенциально указывающих на жизнеспособности клеток. В исследо- 

вании S. Yaron и K. R. Matthews сравнивается эффективность RT-PCR 

на мРНК различных генов-мишеней [41]. В этом исследовании транскрипция 

генов rfbE, fliC, stx1, stx2, mobA, eaeA, hly и гена, кодирующего РНК 16S, 

ищется с помощью RT-PCR на культурах E. coli O157: H7 на разных стадиях 

развития рост. Этот эксперимент позволяет показать, что гены rfbE, stx1 

и ген, кодирующий РНК 16S, транскрибируются на протяжении всего роста. 
Второй эксперимент проводится на жизнеспособных некультивируе- 

мых клетках; проводят амплификацию всех генов с помощью ПЦР, а также 

амплификацию мРНК с помощью RТ-PCR. Все гены амплифицируются 

с помощью ПЦР, тогда как RT-PCR позволяет амплифицировать только гены 

16S РНК, stx1, rfbE и mobA. Это означает, что несмотря на присутствие всех 

генов в жизнеспособных некультивируемых клетках, транскрибируются 

только гены 16S РНК, stx1, rfbE и mobA. 

Данный метод делает эти гены предпочтительными мишенями для по- 

иска E. coli 0157: H7 с помощью RT-PCR. Однако авторы поднимают про- 

блему чувствительности метода, указывая, что требуется присутствие 

от 5·10
5
 до 10

7
 КОЕ в зависимости от целевого гена, чтобы получить ампли- 

фикацию транскриптов с помощью RT-PCR; здесь 10
4
 КОЕ необходимы 

для амплификации генов с помощью стандартной ПЦР. 

6. Реанимация (resuscitation) — самая простая форма возврата к вы- 

ращиванию, происходит при благоприятных условиях для роста. Воздейст- 

вия благоприятной температуры может быть достаточно, чтобы поднять со- 

стояние VBNC [37]. Однако этот случай не является обобщённым, многие 

ростки требуют особых условий для возникновения состояния VBNC. Такие 

условия зависят от исследуемых микробов, поэтому необходимо иметь дело 

с примерами исследований на конкретных микробах. 

Некоторые исследования показывают эффект антиоксидантов (anti- 

ROS — anti-Réactive Oxygen Species). Клетки в некультивируемом состоянии 

имеют пониженный метаболизм, некоторые гены не экспрессируются. 

В своём исследовании I. Kong et al. предположили, что Vibrio vulnificus теряет 

способность восстанавливать H2O2 из-за отсутствия синтеза каталазы. ROS, 

которые больше не разлагаются, становятся токсичными и смертельными 

для клеток, культивируемых на богатой среде [15]. Явление тем более верно 

для агаризованной среды, где эти токсические агенты не могут диффундиро- 

вать, как в случае культуры в жидкой среде. Гипотеза подтверждается 
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с помощью мутанта, лишённого активности каталазы (oxyR-). Последний 

не способен образовывать колонии на среде HIA; он восстанавливает эту 

способность, когда в среду добавляют каталазу или пируват натрия (антиок- 

сидант) [15]. Другое исследование показало эффект ферриоксамина Е, моле- 

кулы сидерофоров, позволяющей импортировать железо в клетку. Железо 

снижает производство ROS, следовательно, уменьшает повреждение клеток 

этими молекулами. Использование ферриоксамина E позволило получить 

большое количество реанимированных клеток в жидкой культуре [27]. 

Случай Legionella pneumophila изучили M. Steinert et al.: этот микроб, 

патогенный для человека, также является паразитом некоторых простейших 

[31]. В своём исследовании команда описывает возвращение L. pneumophila 

к культивируемому состоянию после контакта с Acanthamoeba castellanii — 

простейшим животным-хозяином Legionella [31]. Хозяин позволяет микро- 

бам размножаться, но также переносится в окружающую среду; транспорти- 

руется в среду с более благоприятными условиями. Возврат к культивируе- 

мому состоянию L. pneumophila также возможен после инкубации в оплодо- 

творённых яичных желтках [13]. Этот результат был также воспроизведён на 

других видах: Campylobacter jejuni [8], Listeria monocytogenes [7] и Salmonella 

enterica [9]. 

Rpf и Sps белки. Исследование, проведённое на Micrococcus luteus, по- 

зволило продемонстрировать влияние жизнеспособных и культивируемых 

форм на некультивируемые клетки в той же среде. Формы VBNC M. luteus 

вновь обретают способность делиться в присутствии культивируемых клеток 

этой бактерии [36]. Эта «передача» культивируемого признака индуцируется 

присутствием белков, называемых Resuscitation Promoting Factor (Rpf), — 

это пептидогликангидролаза, секретируемая M. luteus в культивируемом со- 

стоянии. Этот белок обладает литической активностью по отношению к ком- 

понентам бактериальной стенки и, в частности, к муропептидам [19; 32]. Та- 

кие белки также были обнаружены у других видов, большинство из которых 

имеют общий домен («домен Rpf») и аналогичную активность. Исследова- 

ния, проведённые на каждом из белков, секретируемых разными видами бак- 

терий, позволили разделить их на разные группы. Семейство белков Rpf 

включает несколько подсемейств: RpfA, RpfB, RpfC, RpfD, RpfE, Shorts Rpfs, 

белки  LysM,  а также  группу  белков  SceA  и  SceD,  обнаруженных 

в Staphyloccocus, причём последние являются наиболее удаленными от других 

групп белки Rpf [26]. 

Исследование на Salmonella typhimurium также показало существование 

белка Rpf-типа, позволяющего вернуться в культивируемое состояние [24]. 

Однако белки Rpf — не единственные, которые влияют на способность бак- 

терий делиться. Семейство белков Sps (Stationary phase survival) было обна- 

ружено в Firmicutes. Эти белки обладают литической активностью в отноше- 

нии пептидогликана бактериальных стенок, аналогичной активности белков 

Rpf. Семейство белков Sps также подразделяется на группы A, B, C, D и E; 
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каждая из этих групп включает белки, имеющие домен Sps. Белки MltA 

(Membrane-bound lytic transglycosylase A), присутствующие в Clostridium, 

а также белка, происходящего из профага Bacillus subtilis, также имеют до- 

мен Sps [26]. 

Заключение. Состояние VBNC является одновременно важным инст- 

рументом для выживания бактерий и опасным аспектом патогенных бакте- 

рий для хозяина. Знания о состоянии VBNC получены в результате исследо- 

ваний множества бактерий и подчёркивают сложность этого адаптационного 

механизма. Что кажется очевидным, так это то, что индукция и реанимация 

состояния VBNC сильно варьируется среди видов бактерий. Способность из- 

бегать состояний, которые приводят к реанимации, или разработка лекарств, 

вызывающих реанимацию во время антибиотикотерапии, может иметь боль- 

шое влияние на последствия состояния VBNC при хронических инфекцион- 

ных заболеваниях. 

Трудности, возникающие при выращивании всех бактерий, присутст- 

вующих в окружающей среде и в нашей пище, усложняют анализ этих микро- 

бов. Вот почему были разработаны различные методы, позволяющие обнару- 

живать и подсчитывать все жизнеспособные бактерии. Эти методы основаны 

на демонстрации характеристик жизнеспособного состояния: ферментативной 

или метаболической активности и клеточного дыхания, состояния мембран, 

производство нуклеиновых кислот (РНК). Большинство этих методов могут 

обнаруживать жизнеспособные клетки, но не могут идентифицировать или 

изолировать их. За исключением RТ-PCR которая позволяет проводить поиск 

по видам. 
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